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Abstract
We have devised a variational sinc collocation method (VSCM) which can be
used to obtain accurate numerical solutions to many strong-coupling problems.
Sinc functions with an optimal grid spacing are used to solve the linear and
nonlinear Schrödinger equations and a lattice φ4 model in (1 + 1). Our results
indicate that errors decrease exponentially with the number of grid points and
that a limited numerical effort is needed to reach high precision.

PACS numbers: 45.10.Db, 04.25.−g

(Some figures in this article are in colour only in the electronic version)

Due to the inapplicability of perturbation theory in the strong-coupling regime, a number of
different techniques have been devised in the past to deal with strong-coupling problems.
Particular attention has gone into developing new methods, in which variational principles
are used to improve perturbation theory, leading to results which are valid on a much larger
domain. The linear delta expansion (LDE) [1] and the variational perturbation theory (VPT)
[2] are probably the best-known examples of such efforts: in many cases these methods allow
us to obtain series with finite (or even infinite) radius of convergence, in contrast with the
divergent series which are usually obtained using perturbation theory [3].

In this letter we wish to show that the variational ideas which have inspired both the LDE
and VPT methods can also be applied to improve the performance of numerical techniques.
The numerical method that we are using is the sinc collocation (SCM) [4], which uses sinc
functions to efficiently ‘discretize’ a problem in a given region. Sinc functions are used in
different areas of physics and mathematics (see, for example [5] and references therein).

A sinc function is defined as

Sk(h, x) ≡ sin (π(x − kh)/h)

π(x − kh)/h
. (1)
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Figure 1. Sinc functions corresponding to different values.

and obeys the integral representation

Sk(h, x) = h

2π

∫ +π/h

−π/h

e± i(x−kh)t dt. (2)

Here h is the spacing between absolute maximas of neighbouring sinc functions, while the
integer index k controls the location of such maximas.

The reader interested in a more detailed account of the properties of the sinc function
should refer to [4]; here we only state the main properties which will be useful in the following.

Using equation (2) it is straightforward to evaluate the integrals

I1 ≡
∫ +∞

−∞
Sk(h, x) dx = h (3)

I2 ≡
∫ +∞

−∞
Sk(h, x)Sl(h, x) dx = hδkl. (4)

A function f (x) analytic on a rectangular strip centred on the real axis can be approximated
in terms of sinc functions as

f (x) ≈
+∞∑

k=−∞
f (kh)Sk(h, x). (5)

Using equation (5) together with equation (3) one obtains∫ +∞

−∞
f (x) dx ≈ h

∞∑
k=−∞

f (k, h). (6)

An expression for the error in equation (5) has been obtained by Stenger [4], showing that
it decays exponentially as the spacing h is reduced.

As the reader can appreciate in figure 1 for a fixed h a given sinc function selects a
point on the real line, corresponding to its maximum value, where all the other sinc functions
vanish. This property, which allows us to obtain a proper ‘discretization’ of a problem in the
continuum, is at the basis of the SCM.

We now describe the SCM in detail by considering the stationary Schrödinger equation

−1

2

d2ψ

dx2
+ V (x)ψ(x) = Eψ(x). (7)
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The matrix elements Hkl of the Hamiltonian evaluated in the set of sinc functions are
given by

Hkl ≈
[
−1

2
c
(2)
kl + δklV (kh)

]
. (8)

Note that the kinetic term has been obtained by using the property

d2

dx2
Sk(h, x) = 0

∞∑
l=−∞

c
(2)
lk Sk(h, x), (9)

where

c
(2)
lk =




− π2

3h2
if k = l

− 2

h2

(−1)k−l

(k − l)2
if k �= l

, (10)

while the potential matrix has been approximated by the diagonal matrix of the potential
evaluated over the grid. To understand this approximation we must realize that a sinc function
converts into a Dirac delta in the limit h → 0 and that the overlap between distinct sinc
functions is minimal unless they coincide.

Once h is specified the diagonalization of Hkl allows us to obtain numerical approximations
to the energies and wave functions of the problem: this strategy was used in [6] to solve the
Schrödinger equation corresponding to different potentials. Although the choice of h strongly
affects the precision of the numerical results, no procedure to determine h is discussed in
[6]. Using a different method, the author and collaborators [7] have solved numerically the
Schrödinger equation for the anharmonic oscillator using an arbitrary basis of Gauss–Hermite
functions, depending upon a scale factor. In that paper it was proved that the arbitrary scale
factor can be chosen optimally by applying the principle of minimal sensitivity (PMS) [8] to
the sub-trace of the Hamiltonian matrix.

Using the same procedure we regard h as a variational parameter and consider the trace

Tr [H ] = π2

6h2
(2kmax + 1) +

kmax∑
k=−kmax

V (kh), (11)

where 2kmax + 1 is the number of sinc functions (grid points) used in the evaluation.
The solution to the PMS equation

d

dh
Tr [H ] = 0 (12)

provides the optimal spacing1. Once that h has been determined using the PMS our method
allows us to obtain quite rapidly the numerical approximations2.

In figure 2 we display the log10

∣∣E0 − Eexact
0

∣∣ as a function of the spacing h using 21
grid points (kmax = 10) for the harmonic oscillator V (x) = x2/2. The PMS condition,
equation (12), yields hPMS = 0.547, which is remarkably close to the minimum of the curve.

The anharmonic oscillator

H = − d2

dx2
+ x2 + gx4

1 Usually this equation admits a unique real solution.
2 All the examples considered in this letter have been obtained using a Mathematica code, running on a Linux
desktop, with times of execution ranging from few seconds to few minutes.
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Figure 2. log10 |E0 − Eexact
0 | as a function of the spacing h using kmax = 10 for the harmonic

oscillator V (x) = x2/2.

provides a more demanding test of our method. We have obtained the ground state energy
corresponding to g = 2000 using a grid of 101 points (kmax = 50) and compared it with the
precise results of [9], finding that the first 42 digits are correct (underlined):

E0 = 13.388 441 701 008 061 939 006 176 902 807 286 522 960 99.

The result is also seen to converge exponentially to the exact answer as a function of the
number of grid points.

We now consider the Gross–Pitaevskii (GP) equation[
−1

2

d2

dx2
+ Vext(x) + 4πa|ψ(x)|2

]
ψ(x) = Eψ(x),

which is relevant in the study of Bose–Einstein condensation. Vext(x) is the external confining
potential and E is the energy of the condensate. The wave function ψ(x) is normalized to
yield the number of particles in the condensate, i.e.

∫
dx|ψ(x)|2 = N .

We have applied our method to the GP equation by first solving the corresponding linear
equation, [

−1

2

d2

dx2
+ Vext(x)

]
ψ(0)(x) = E(0)ψ(0)(x),

and by then implementing a self-consistent procedure in which the density term is evaluated
taking the wave function calculated at the previous step and then it is used to build an effective
potential V

(n)
eff (x) ≡ Vext(x)+ 4πa|ψ(n−1)(x)|2 (here E(n) and ψ(n)(x) are the energy and wave

function calculated after n iterations). In this potential the resulting Schrödinger equation is
solved again and the procedure is iterated until self-consistency is reached.

In figure 3 we have plotted the wave function in an harmonic trap, obtained after 0, 20 and
30 iterations of our method, assuming 4πa = 1 and

∫ +∞
−∞ |ψ(x)|2 dx = 2. A grid of 21 points

has been used. The 0 th order wave function corresponds to the usual harmonic oscillator
wave function. In figure 4 we have plotted log10

∣∣E0 − Eexact
0

∣∣ as a function of the number
of iterations for different grid sizes (11, 21 and 31, respectively): the data initially display an
exponential decay—independent of the grid size—which is then followed by a plateau. The
plateau signals that the maximal precision has been achieved for a given grid size.
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Figure 3. Probability density for the ground state of the GP equation using Vext(x) = x2/2 .
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Figure 4. log10 |E0 − Eexact
0 | as a function of the number of iterations for different grid sizes.

As a last example of application of our method we consider a lattice φ4 in 1+1 dimensions.
This model has been studied by Nishiyama in [10] and corresponds to the Hamiltonian

H =
∑

i

[
π2

i

2
+

1

2
(φi − φi+1)

2 +
1

2
φ2

i + gφ4
i

]
. (13)

The fields obey the canonical commutation relations [φi, πj ] = iδij and [φi, φj ] = [πi, πj ] =
0. Following [10] we perform a rescaling of the fields φ → g−1/6φ and π → g1/6π and
obtain

H = g1/3
∑

i

[
π2

i

2
+ φ4

i + λ

(
1

2
(φi − φi+1)

2 +
φ2

i

2

)]
,

where λ ≡ g−2/3. We express the ground state energy as Eg = g1/3εg .
Nishiyama has numerically solved this model using a linked cluster expansion (LCE) and

the density matrix renormalization group (DMRG) [11]: using the LCE he has obtained a
perturbation series in λ, up to order 11, whose convergence has then been improved using
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Figure 5. Ground state energy for the lattice φ4 model as a function of λ = g−2/3.

Aitken’s δ2 process. The comparison with the DMRG results shows that LCE is valid up to
λ ≈ 2.

We wish to show that the same problem can be solved using our method. We have
proceeded as follows: first we have solved the Schrödinger equation for the anharmonic
oscillator, corresponding to setting λ = 0, and we have obtained the wave function
�(φ) ≈ ∑kmax

r=−kmax
αrSr(h, φ)/

√
h; we have then used �(φ) to evaluate the matrix element

〈�(φi+1)|H |�(φi+1)〉, obtaining the effective potential felt by the ith site:

Ṽ (φ) = φ4 + λ


1

2


φ2 − 2φ

kmax∑
r=−kmax

α2
r rh +

kmax∑
r=−kmax

α2
r (rh)2


 +

φ2

2


 . (14)

The Schrödinger equation is then solved again and the coefficients αr are recalculated.
The procedure is repeated until self-consistency is reached.

In figure 5 we have calculated the scaled ground state energy, εg , as a function of λ,
using a grid of 41 grid points (kmax = 20). The solid curve corresponds to the perturbative
expansion of equation (6) of [10], to order λ11, obtained with the LCE. Our result compares
quite favourably also with the results obtained with the DMRG—see figure 2 of [10]—and
have been obtained in few minutes of running time on a Linux desktop running Mathematica.

Note that in [10] it was speculated that there is a singularity around λ = −2, possibly
related to the onset of a phase transition. Our numerical simulation does not show the presence
of any discontinuity in εg .

In figure 6 we show the effective potential for different values of λ, ranging from λ = −5
to λ = 5 (going from the lowest to the highest curves).

We wish to conclude this letter stressing few points, which we believe to be important: the
VSCM provides errors which decrease exponentially with the number of grid elements; the
grid spacings are obtained using the PMS and allow us to achieve optimal results with limited
numerical effort; the diagonalization of the Hamiltonian matrix provides approximations for
the energies and wave functions of part of the spectrum and can be used to study the time
evolution of a wave packet (similarly to what done in [7]); finally, our method can also be
applied without modifications to models with non-polynomial interactions.

The last example shows that VSCM can be a useful tool in the numerical solution of lattice
quantum models and it could possibly provide an alternative to numerical methods already
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Figure 6. Effective potential Ṽ (φ) for values of λ going from −5 to 5. The curves differ by
	λ = 1.

present on the ‘market’. One interesting issue is the application of this method to problems
in more than one dimension: in such cases, calling d the number of dimensions, we expect to
deal with Nd ×Nd matrices (although the symmetries in the problem could help to reduce the
number of elements of the Hamiltonian matrix, as in the case of spherical symmetry), while
the procedure illustrated in this letter would essentially remain unchanged. In these cases our
variational method could be essential to provide small errors with the least possible number
of grid elements. Future work in this direction is expected.
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